首页 | 本学科首页   官方微博 | 高级检索  
     


On a random graph with immigrating vertices: Emergence of the giant component
Authors:David J. Aldous  Boris Pittel
Abstract:A randomly evolving graph, with vertices immigrating at rate n and each possible edge appearing at rate 1/n, is studied. The detailed picture of emergence of giant components with O(n2/3) vertices is shown to be the same as in the Erdős–Rényi graph process with the number of vertices fixed at n at the start. A major difference is that now the transition occurs about a time t=π/2, rather than t=1. The proof has three ingredients. The size of the largest component in the subcritical phase is bounded by comparison with a certain multitype branching process. With this bound at hand, the growth of the sum‐of‐squares and sum‐of‐cubes of component sizes is shown, via martingale methods, to follow closely a solution of the Smoluchowsky‐type equations. The approximation allows us to apply results of Aldous [Brownian excursions, critical random graphs and the multiplicative coalescent, Ann Probab 25 (1997), 812–854] on emergence of giant components in the multiplicative coalescent, i.e., a nonuniform random graph process. © 2000 John Wiley & Sons, Inc. Random Struct. Alg., 17: 79–102, 2000
Keywords:branching markov chain  giant component  martingale  multiplicative coalescent  random graph  weak convergence
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号