摘 要: | 防治煤矿突水时需迅速精准地判别突水水源,激光诱导荧光(LIF)光谱技术具有灵敏度高、快速准确监测特点,为检测突水水源提供了一种新的方法。该研究引入该技术以获取突水荧光光谱数据。采用卷积(SG)平滑和多元散射校正(MSC)方法对光谱图进行预处理,以消除光谱采集过程中噪声干扰。采用主成分分析(PCA)方法提取特征信息,针对SG预处理后的数据,当主成分个数为3时,累积贡献率可达到99.76%,已基本保留原数据的全信息。选择3层结构BP神经网络建立分类判别模型,通过不同方式构造训练集和测试集,SG预处理数据构建的分类模型可以达到精准判别,而对于MSC预处理和原始数据出现很少的误判。实验结果表明SG预处理结果要优于MSC预处理。研究结果表明,将PCA和BP神经网络结合建立分类模型,能有效判别煤矿突水水源,且具有较强的自组织、自学习能力。
|