首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A 3D multi-field element for simulating the electromechanical coupling behavior of dielectric elastomers
Abstract:We propose a multi-field implicit finite element method for analyzing the electromechanical behavior of dielectric elastomers. This method is based on a four-field variational principle, which includes displacement and electric potential for the electromechanical coupling analysis, and additional independent fields to address the incompressible constraint of the hyperelastic material. Linearization of the variational form and finite element discretization are adopted for the numerical implementation. A general FEM program framework is developed using C ++ based on the open-source finite element library deal.II to implement this proposed algorithm. Numerical examples demonstrate the accuracy, convergence properties, mesh-independence properties, and scalability of this method. We also use the method for eigenvalue analysis of a dielectric elastomer actuator subject to electromechanical loadings. Our finite element implementation is available as an online supplementary material.
Keywords:
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号