首页 | 本学科首页   官方微博 | 高级检索  
     


Semi-permeable Yoffe-type interfacial crack analysis in MEE composites based on the strip electro-magnetic polarization saturation model
Abstract:Fracture analysis of a semi-permeable Yoffe-type interfacial crack propagating subsonically in magneto-electro-elastic(MEE) composites is presented based on the strip electromagnetic polarization saturation(SEMPS) model. The electro-magnetic fields inside the crack are considered under the semi-permeable boundary condition. Nonlinear effects near the interfacial crack tip are represented by different electro-magnetic saturation zones. Utilizing the extended Stroh's method, we derive the moving dislocation densities as well as intensity factor and energy release rate for Yoffe-type MEE interfacial crack. Numerical results through an iterative approach are presented to show the characteristics of fracturedominant parameters with respect to propagation velocity and boundary condition category. The fracture-dominant parameters under the semi-permeable boundary condition are lower than those under the impermeable one, which implies that the electro-magnetic fields in the crack gap can retard the propagation of MEE interfacial crack.
Keywords:
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号