首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An approximate theoretical analysis and experimental verification of turbulent entrance region flow of drag reducing fluids
Authors:S N Shintre  R A Mashelkar  J Ulbrecht
Institution:(1) Department of Chemical Engineering, University of Salford, M 5 4 WT Salford, UK;(2) NCL, Poona, India
Abstract:Summary Entry lengths for pipe flows of moderately drag reducing fluids are determined using momentum integral technique. It is shown theoretically that the entry lengths for drag reducing fluids could be significantly larger than the Newtonian fluids flowing turbulently under otherwise identical conditions. The experimental data from the literature bear out the theoretical calculations.
Zusammenfassung Mit Hilfe der Impuls-Methode wird die Einlauflänge in einer Rohrströmung für Flüssigkeiten mit mäßig starker Widerstandsverminderung berechnet. Es wird vorausgesagt, daß die Einlauflänge für derartige Flüssigkeiten erheblich größer sein kann als für newtonsche Flüssigkeiten unter sonst identischen Bedingungen. Aus der Literatur entnommene experimentelle Daten bestätigen diese theoretischen Berechnungen.

Nomenclature A 1 Coefficient in eq. 7] - A Slope of logarithmic velocity profile - a Exponent in eq. 10] - B Intercept function for logarithmic velocity profile - De Deborah number, 
$$\frac{{\theta _{fl} u*^2 }}{v}$$
- f Friction factor - F Function, eq. 30] - G Function given in eq. 11] - 
$$\bar p$$
Static pressure, dynes/cm2 - q Index of power law velocity profile - R Pipe radius, cm - r Radial distance, cm - R delta Core radius, cm - Re Reynolds number - utilde Axial velocity, cm/s - u c Core velocity, cm/s - u + Dimensionless velocity, eq. 5] - u * Friction velocity, 
$$\sqrt {\frac{{\tau _w }}{\rho }} $$
, cm/s - 
$$\tilde \upsilon $$
Radial velocity, cm/s - V Average velocity, cm/s - x Axial distance, cm - x e Entry length, cm - y Distance from the wall, cm - y + Dimensionless distance, eq. 5] - y I + Dimensionless viscous sublayer thickness - agr coefficient in eq. 17] - beta exponent of Reynolds number in eq. 17] - 
$$\dot \gamma $$
shear rate, s–1 - delta boundary layer thickness, cm - theta fl fluid relaxation time, s - µ fluid viscosity, gm/cm s - v kinematic viscosity, cm2/s - xgr l laminar sublayer thickness, dimensionless - rgr fluid density, gm/cm3 - tau shear stress, dynes/cm2 - tau w shear stress at the wall, dynes/cm2 - psgr 1,psgr 2,psgr 3,psgr 4 functions in eq. 27] - ~ time averaged quantities - — dimensionless quantity With 3 figures and 1 table
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号