首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Trace element speciation by ICP-MS in large biomolecules and its potential for proteomics
Authors:Sanz-Medel Alfredo  Montes-Bayón María  Luisa Fernández Sánchez María
Institution:(1) Department of Physical and Analytical Chemistry, University of Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain
Abstract:Latest studies on the chemical association of trace elements to large biomolecules and their importance on the bioinorganic and clinical fields are examined. The complexity of the speciation of metal-biomolecules associations in various biological fluids is stressed. Analytical strategies to tackle speciation analysis and the-state-of-the-art of the instrumentation employed for this purpose are critically reviewed. Hyphenated techniques based on coupling chromatographic separation techniques with ICP-MS detection are now established as the most realistic and potent analytical tools available for real-life speciation analysis. Therefore, the status and potential of metal and semimetals elemental speciation in large biocompounds using ICP-MS detection is mainly focused here by reviewing reported metallo-complexes separations using size-exclusion (SEC), ion-exchange (IE), reverse phase chromatography (RP) and capillary electrophoresis (CE). Species of interest include coordination complexes of metals with larger proteins (e.g. in serum, breat milk, etc.) and metallothioneins (e.g. in cytosols from animals and plants) as well as selenoproteins (e.g. in nutritional supplements), DNA-cisplatin adducts and metal/semimetal binding to carbohydrates. An effort is made to assess the potential of present trace elements speciation knowledge and techniques for "heteroatom-tagged" (via ICP-MS) proteomics.
Keywords:Trace element speciation  ICP-MS  Chromatography  Large biomolecules  Biological samples  Bio-inorganic proteomics
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号