首页 | 本学科首页   官方微博 | 高级检索  
     


Structural study on the carbohydrate moiety of calf intestinal alkaline phosphatase
Authors:Bublitz R  Hoppe H  Cumme G A  Thiele M  Attey A  Horn A
Affiliation:Institute of Biochemistry, Medical Faculty, Friedrich Schiller University, D-07743 Jena, Germany.
Abstract:Surprisingly alkaline phosphatase (AP) (EC 3.1.3.1) of calf intestine is found in large amounts, e.g. 80%, within chyme. Most of the enzyme is present as a mixture of four differently hydrophobic anchor-bearing forms and only the minor part is present as an anchorless enzyme. To investigate whether changes in the N-glycosylation pattern are signals responsible for large-scale liberation from mucosa into chyme, the glycans of the two potential glycosylation sites predicted from cDNA were investigated by matrix-assisted laser desorption/ionization and electrospray ionization mass spectrometry in combination with exoglycosidase treatment after tryptic digestion and reversed-phase chromatography. The glycans linked to Asn249 are at least eight different, mainly non-fucosylated, biantennary or triantennary structures with a bisecting N-acetylglucosamine. For the most abundant glycopeptide (40%) the following glycan structure is proposed: [carbostructure: see text]. The glycans linked to Asn410 are a mixture of at least nine, mainly tetraantennary, fucosylated structures with a bisecting N-acetylglucosamine. For the most abundant glycopeptide (35%) the following glycan structure is proposed: [carbostructure: see text]. For the structures the linkage data were deduced from the reported specificities of the exoglycosidases used and the specificities of the transglycosidases active in biosynthesis. The majority of glycans are capped by alpha-galactose residues at their non-reducing termini. In contrast to the glycans linked to other AP isoenzymes, no sialylation was observed. Glycopeptide 'mass fingerprints' of both glycosylation sites and glycan contents do not differ between AP from mucosa and chyme. These results suggest that the observed large-scale liberation of vesicle-bound glycosylphosphatidylinositol (GPI)-anchored AP from mucosa into chyme is unlikely to be mediated by alteration of glycan structures of the AP investigated. Rather, the exocytotic vesicle formation seems to be mediated by the controlled organization of the raft structures embedding GPI-AP. (c) 2001 John Wiley & Sons, Ltd.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号