首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A unified exact analysis for the Poynting effects of cylindrical tubes made of Hill’s class of Hookean compressible elastic materials at finite strain
Institution:1. Institute of Mechanics, Ruhr-University Bochum, D-44780 Bochum, Germany;2. Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
Abstract:A direct, natural extension of Hooke’s law to finite strain was achieved by R. Hill in 1978, employing the notion of work-conjugate measures of stress and strain. With Seth-Hill (Doyle-Ericksen) class of finite strain measures, this extension actually defines a broad class of compressible hyperelastic materials at finite strain, each of which retains the simple linear structure of Hooke’s law as stress–strain relationship. Several known simple elasticity models at finite strain are included as its particular examples. With a novel idea of utilizing a suitable parametric variable, here we present a unified study of the free-end torsion problem (Poynting effects) of thin-walled cylindrical tubes made of the foregoing Hill’s class of Hookean type hyperelastic materials. We show that it is possible to derive a unified exact solution to the nonlinear coupling equations relating the torque (the shear stress) and the controlling deformation quantities including, in particular, the axial length change. Discussions and comparisons concerning various Hookean type elasticity models are made based on the exact solution obtained.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号