首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Shear band propagation from a crack tip subjected to Mode II shear wave loading
Institution:Division of Engineering, Brown University Providence, RI 02912, USA;105-50 GALCIT California Institute of Technology, Pasadena, CA 91125, USA;Dept of Mechanical Engineering, SUNY at Stony Brook, NY 11794-2300, USA
Abstract:Results are reported for pressure–shear plate impact experiments in which pre-cracked 4340 steel plates are subjected to Mode II loading. Experiments show the propagation of a shear band ahead of the initial crack. Finite element simulations are used to interpret the results. Normal and transverse velocity–time profiles measured at the rear surface of the target can be simulated reasonably well using even an elastic model for the material response. A propagating shear band is obtained when the material is modeled as having reduced shearing resistance described by a thermo-viscoplastic power law, and complete loss of shearing resistance when the shear strain reaches a critical value. However, the predicted speed of propagation of the tip of the shear band is substantially less than required to explain the lengths of the bands observed in the experiments. Adjustments of parameters of the power-law model have little effect on the overall length of the band. Possible reasons for differences between predicted and measured shear band speeds are examined. Further reduction in the shearing resistance in the shear band appears to be essential for the simulated bands to be as long as those observed in the experiments.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号