首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Buckling of embedded multi-walled carbon nanotubes under combined torsion and axial loading
Institution:1. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiaotong University, Shanghai 200240, People’s Republic of China;2. Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, Vic. 3122, Australia
Abstract:This paper describes an investigation into elastic buckling of an embedded multi-walled carbon nanotube under combined torsion and axial loading, which takes account of the radial constraint from the surrounding elastic medium and van der Waals force between two adjacent tube walls. Depending on the ratio of radius to thickness, the multi-walled carbon nanotubes discussed here are classified as thin, thick, and nearly solid. Critical buckling load with the corresponding mode is obtained for multi-walled carbon nanotubes under combined torsion and axial loading, with various values of the radius to thickness ratio and surrounded with different elastic media. The study indicates that the buckling mode (m, n) of an embedded multi-walled carbon nanotube under combined torsion and axial loading is unique and it is different from that with axial compression only. New features for the buckling of an embedded multi-walled carbon nanotube under combined torsion and axial loading and the meaningful numerical results are useful in the design of nanodrive device, nanotorsional oscillator and rotational actuators, where multi-walled carbon nanotubes act as basic elements.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号