Finite element error analysis of a zeroth order approximate deconvolution model based on a mixed formulation |
| |
Authors: | Carolina Cardoso Manica Songul Kaya Merdan |
| |
Affiliation: | a Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA b Department of Mathematics, Middle East Technical University, Ankara 06531, Turkey |
| |
Abstract: | A suitable discretization for the Zeroth Order Model in Large Eddy Simulation of turbulent flows is sought. This is a low order model, but its importance lies in the insight that it provides for the analysis of the higher order models actually used in practice by the pioneers Stolz and Adams [N.A. Adams, S. Stolz, On the approximate deconvolution procedure for LES, Phys. Fluids 2 (1999) 1699-1701; N.A. Adams, S. Stolz, Deconvolution methods for subgrid-scale approximation in large eddy simulation, in: B.J. Geurts (Ed.), Modern Simul. Strategies for Turbulent Flow, Edwards, Philadelphia, 2001, pp. 21-44] and others. The higher order models have proven to be of high accuracy. However, stable discretizations of them have proven to be tricky and other stabilizations, such as time relaxation and eddy viscosity, are often added. We propose a discretization based on a mixed variational formulation that gives the correct energy balance. We show it to be unconditionally stable and prove convergence. |
| |
Keywords: | Zeroth Order Model Deconvolution Approximate Deconvolution Models Large Eddy Simulation |
本文献已被 ScienceDirect 等数据库收录! |
|