首页 | 本学科首页   官方微博 | 高级检索  
     


Bohr correspondence principle for large quantum numbers
Authors:Richard L. Liboff
Affiliation:1. Schools of Electrical Engineering and Applied Physics, Cornell University, Ithaca, New York
Abstract:Periodic systems are considered whose increments in quantum energy grow with quantum number. In the limit of large quantum number, systems are found to give correspondence in form between classical and quantum frequency-energy dependences. Solely passing to large quantum numbers, however, does not guarantee the classical spectrum. For the examples cited, successive quantum frequencies remain separated by the incrementhI ?1, whereI is independent of quantum number. Frequency correspondence follows in Planck's limit,h → 0. The first example is that of a particle in a cubical box with impenetrable walls. The quantum emission spectrum is found to be uniformly discrete over the whole frequency range. This quality holds in the limitn → ∞. The discrete spectrum due to transitions in the high-quantum-number bound states of a particle in a box with penetrable walls is shown to grow uniformly discrete in the limit that the well becomes infinitely deep. For the infinitely deep spherical well, on the other hand, correspondence is found to be obeyed both in emission and configuration. In all cases studied the classical ensemble gives a continuum of frequencies.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号