首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Majority-Vote Cellular Automata, Ising Dynamics, and P-Completeness
Authors:Cristopher Moore
Institution:1. Santa Fe Institute, Santa Fe, New Mexico, 87501
Abstract:We study cellular automata where the state at each site is decided by a majority vote of the sites in its neighborhood. These are equivalent, for a restricted set of initial conditions, to nonzero probability transitions in single spin-flip dynamics of the Ising model at zero temperature. We show that in three or more dimensions these systems can simulate Boolean circuits of AND and OR gates, and are therefore P-complete. That is, predicting their state t time-steps in the future is at least as hard as any other problem that takes polynomial time on a serial computer. Therefore, unless a widely believed conjecture in computer science is false, it is impossible even with parallel computation to predict majority-vote cellular automata, or zero-temperature single spin-flip Ising dynamics, qualitatively faster than by explicit simulation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号