首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Phase transitions driven by state-dependent poisson noise
Authors:Porporato Amilcare  D'Odorico Paolo
Institution:Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina, USA. amilcare@duke.edu
Abstract:Nonlinear systems driven by state-dependent Poisson noise are introduced to model the persistence of climatic anomalies in land-atmosphere interaction caused by the soil-moisture dependence of the frequency of rainfall events. It is found that these systems may give rise to bimodal probability distributions, while the state variable randomly persists around the preferential states because of transient dynamics that are opposite to the long-term behavior. Mean-field analysis and numerical simulations of the spatially distributed systems reveal a symmetry-breaking bifurcation for sufficiently strong spatial diffusive couplings and intermediate noise intensities. In such conditions, the initial development of spatial patterns is followed by a stable configuration, selected on the bases of the initial conditions in correspondence of the remnants of the modes of the uncoupled system.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号