首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Orbit determination for geostationary satellites with the combination of transfer ranging and pseudorange data
Abstract:Geostationary satellites(GEOs) play a significant role in the regional satellite navigation system.Simulation experiments show that the clock corrections could be mitigated through a single strategy or double differencing strategies for a navigation constellation,but for the mode of individual GEO orbit determination,high precision orbit and clock correction could not be obtained in the orbit determination based on the pseudorange data.A new GEO combined precise orbit determination(POD) strategy is studied in this paper,which combines pseudorange data and C-band transfer ranging data.This strategy overcomes the deficiency of C-band transfer ranging caused by limited stations and tracking time available.With the combination of transfer ranging and pseudorange data,clock corrections between the GEO and the stations can be estimated simultaneously along with orbital parameters,maintaining self-consistency between the satellite ephemeris and clock correction parameters.The error covariance analysis is conducted to illuminate the contributions from the transfer ranging data and the psudoranging data.Using data collected for a Chinese GEO satellite with 3 C-band transfer ranging stations and 4 L-band pseudorange tracking stations,POD experiments indicate that a meter-level accuracy is achievable.The root-mean-square(RMS) of the post-fit C-band ranging data is about 0.203 m,and the RMS of the post-fit pseudorange is 0.408 m.Radial component errors of the POD experiments are independently evaluated with the satellite laser ranging(SLR) data from a station in Beijing,with the residual RMS of 0.076 m.The SLR evaluation also suggests that for 2-h orbital predication,the predicted radial error is about 0.404 m,and the clock correction error is about 1.38 ns.Even for the combination of one C-band transfer ranging station and 4 pseudorange stations,POD is able to achieve a reasonable accuracy with the radial error of 0.280 m and the 2-h predicted radial error of 0.888 m.Clock synchronization between the GEO and tracking stations is achieved with an estimated accuracy of about 1.55 ns,meeting the navigation service requirements.
Keywords:
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号