首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Synthesis of nanocylinders consisting of graft block copolymers by the photo‐induced ATRP technique
Authors:Koji Ishizu  Hirokazu Kakinuma
Abstract:Photoinduced atom transfer radical polymerizations (ATRP) of t‐butyl methacrylate (BMA) were carried out, initiated by model initiator benzyl N,N‐diethyldithiocarbamate (BDC) in the presence of CuCl/bipyridine (bpy) under UV irradiation. We performed the first‐order time‐conversion plots in this polymerization system, and the straight line in the semilogarithmic coordinates indicated a first‐order in the monomer. The molecular weight of poly(t‐butyl methacrylate) (PBMA) increased in direct proportion to monomer conversion. The molecular weight distribution (Mw/Mn) of PBMA was about 1.3. The initiator efficiency, f, was close to 1.0, which indicated that no side reactions occurred. A copper complex, CuCl/bpy, reversibly activated the dormant polymer chains via a N,N‐diethyldithiocarbamate (DC) transfer reaction such as Cu(DC)Cl/bpy, and it was dynamic equilibrium that was responsible for the controlled behavior of the polymerization of BMA. On the basis of this information, we established a preparation method of nanocylinders consisting of graft block copolymers by grafting from photoinduced ATRP of multifunctional polystyrene having DC pendant groups with vinyl monomers first monomer, BMA; second monomer, styrene or methyl methcrylate (MMA)]. We have carried out the characterization of such nanocylinders in detail. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 63–70, 2005
Keywords:photoinduced ATRP  living radical polymerization  nanocylinders consisting of graft block copolymers  N  N‐diethyldithiocarbamate  grafting from method
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号