首页 | 本学科首页   官方微博 | 高级检索  
     


Porphyrin-fullerene C60 dyads with high ability to form photoinduced charge-separated state as novel sensitizers for photodynamic therapy
Authors:Milanesio M Elisa  Alvarez M Gabriela  Rivarola Viviana  Silber Juana J  Durantini Edgardo N
Affiliation:Departamento de Química, Universidad Nacional de Río Cuarto, Río Cuarto, Agencia Postal Nro 3, X5804BYA Río Cuarto, Córdoba, Argentina.
Abstract:The photodynamic activities of a porphyrin-C60 dyad (P-C60) and its metal complex with Zn(II) (ZnP-C60) were compared with 5-(4-acetamidophenyl)-10,15,20-tris(4-methoxyphenyl)porphyrin (P), both in homogeneous medium-bearing photooxidizable substrates and in vitro on the Hep-2-human-larynx-carcinoma cell line. This study represents the first evaluation of dyads, with a high capacity to form a photoinduced charge-separated state, to act as agents to inactivate cells by photodynamic therapy (PDT). Absorption and fluorescence spectroscopic studies were performed in toluene and N,N-dimethylformamide (DMF). The emission of the porphyrin moiety in the dyads is strongly quenched by the attached fullerene C60 moiety. The singlet molecular oxygen, O2(1delta(g)), productions (phi(delta)) were determined using 9,10-dimethylanthracene (DMA). The values of phi(delta) were strongly dependent on the solvent's polarity. Comparable phi(delta) values were found for dyads and P in toluene, while O2(1delta(g)) production was significantly diminished for the dyads in DMF. In more polar solvent, the stabilization of charge-transfer state takes place, decreasing the efficiency of porphyrin triplet-state formation. Also, both dyads photosensitize the decomposition of L-tryptophan in DMF. In biological medium, no dark cytotoxicity was observed using sensitizer concentrations < or = 1 microM and 24 h of incubation. The uptake of sensitizers into Hep-2 was studied using 1 microM of sensitizer and different times of incubation. Under these conditions, a value of approximately 1.5 nmol/10(6) cells was found between 4 and 24 h of incubation. The cell survival after irradiation of the cells with visible light was dependent upon light-exposure level. A higher photocytotoxic effect was observed for P-C60, which inactivates 80% of cells after 15 min of irradiation. Moreover, both dyads keep a high photoactivity even under argon atmosphere. Thus, depending on the microenvironment where the sensitizer is localized, these compounds could produce biological photodamage through either an O2(1delta(g))-mediated photoreaction process or a free-radicals mechanism under low oxygen concentration. These results show that molecular dyads, which can form a photoinduced charge-separated state, are a promising model for phototherapeutic agents, with potential applications in cell inactivation by PDT.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号