首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Parametric study on heat transfer enhancement and pressure drop of an internal blade tip-wall with pin-fin arrays
Authors:Gongnan?Xie  Email author" target="_blank">Bengt?SundénEmail author  Lieke?Wang  Esa?Utriainen
Institution:(1) The Key Laboratory of Contemporary Design and Integrated Manufacturing Technology, Northwestern Polytechnical University, P.O. Box 552, 710072 Xi’an, China;(2) Division of Heat Transfer, Department of Energy Sciences, Lund University, P.O. Box 118, 221 00 Lund, Sweden;(3) Siemens Industrial Turbomachinery AB, 612 83 Finspang, Sweden;
Abstract:One way to cool gas turbine tips is to design serpentine passages with 180° turns inside the blades to fully utilize the coolant potential. It is therefore a desire to improve the cooling of the blade tips to ensure a long durability and safe operation. In the present work, a two-pass channel with a 180° turn and various arrays of pin-fins mounted internally on the tip-cap is considered. The effects of pin-fin height, diameter and pitches on the heat transfer enhancement and pressure drop are investigated numerically. The nominal ratio of height to diameter (H/D) of the pin-fins is 2, and the ratio of tip clearance to pin-fin height is about 10. The inlet Reynolds numbers based on hydraulic diameter are ranging from 100,000 to 600,000. Details of the three dimensional fluid flow and heat transfer over the pin-finned tips are presented. The overall performances of various tips are compared. It is found that due to the combination of turning, impingement and pin-fin crossflow, the heat transfer coefficient of the pin-finned tips is up to a factor of 2.1 higher than that of the smooth tip. This augmentation is achieved at the expense of a penalty of pressure drop around 30%. Results show that the magnitude of the heat transfer enhancement depends upon pin-fin configuration and arrangement. It is suggested that pin-fins are suitable to enhance the blade tip heat transfer and thus to improve the tip cooling.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号