首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evolution of resonance disturbances in a hartmann flow
Authors:A M Lifshits  V N Shtern
Institution:(1) Novosibirsk
Abstract:A rapid increase of energy of fluctuation motion is observed after a severe loss of stability of laminar regimes. This phenomenon does not find explanation in the scope of the linear theory of stability, which, though it predicts an exponential increase of disturbances in the supercritical region, gives quite small values of the increments. The explosionlike turbulence is due to a nonlinear mechanism. The simplest collective interaction of disturbances is illustrated by a set of three harmonic oscillations whose parameters are associated by resonance relations. Such triplets, being an elementary but sufficiently meaningful model of the nonlinear theory of hydrodynamic stability, have become in recent years the object of interesting investigations 1–4]. In 5–7] branching of stationary triplets of small amplitude from laminar regimes was investigated and it was shown that, beginning with certain Reynolds numbers, the triplet can be composed of neutral waves and Tolman-Schlichting waves increasing according to the linear theory. It is shown in the article that a quite rich example in this case is Hartmann flow, where the existence of triplets of disturbances having a different symmetry relative to the axis of the channel is admitted. The evolution of triplets is studied for near-critical values of the parameters in the framework of amplitude equations obtained on the basis of the Galerkin method with the use of eigenfunctions of the linear theory of stability as the basis 8]. Regimes stationary in the mean are calculated in the supercritical region: limiting cycles and strange attractors; in the latter case a spectral analysis is carried out.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 33–39, September–October, 1978.The authors thank M. A. Gol'dshtik and M. I. Rabinovich for discussing the work.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号