首页 | 本学科首页   官方微博 | 高级检索  
     


Dissipation of electronic excitation energy within a C60 [6:0]-hexaadduct carrying 12 pyropheophorbide a moieties
Authors:Helmreich Matthias  Ermilov Eugeny A  Meyer Matthias  Jux Norbert  Hirsch Andreas  Röder Beate
Affiliation:Institut für Organische Chemie, Universit?t Erlangen-Nürnberg, Henkestrasse 42, D-91054 Erlangen, Germany.
Abstract:The synthesis and photophysical studies of a fullerene [6:0]-hexaadduct that carries 12 pyropheophorbide a units are reported. The synthesis started with the malonate 1, which was coupled under template conditions to C(60)() to give the hexaadduct 2. After removal of the protecting group with acid the dodecakis amino-substituted precursor compound 3 was generated. 3 was not isolated but directly reacted with the N-succinimid ester 4 of pyropheophorbide a (5), which delivered the desired fullerene [6:0]-hexaadduct 6 in excellent yield. The photophysical properties of 6 were studied and compared with those of the fullerene [5:1]-hexaadduct 7 with six pyropheophorbide a groups and the bispyropheophorbide a-fullerene [5:1]-hexaadduct 8. The pyropheophorbide a units in 6 undergo after light absorption very efficient energy transfer as well as partly excitonic interaction. The last process results in formation of energy traps, which could be resolved experimentally. Compared to the reference compounds 7 and 8, 6 has a higher probability of trap formation due to a higher local concentration of dye molecules and shorter distances between them. As a consequence, the excitation energy is delivered rapidly (within 23 ps) to the traps, resulting in decreases of the fluorescence, intersystem crossing, and singlet oxygen quantum yields in comparison with the values of the reference compounds.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号