首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical manifold method for vibration analysis of Kirchhoff's plates of arbitrary geometry
Institution:1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China;2. Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology, Beijing 100124, China;3. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
Abstract:Many rectangular plate elements developed in the history of finite element method (FEM) have displayed excellent numerical properties, yet their applications have been limited due to inability to conform to the arbitrary geometry of plates and shells. Numerical manifold method (NMM), considered to be a generalization of FEM, can easily solve this issue by viewing a mesh made up of rectangular elements as mathematical cover. In this study, ACM element (Adini and Clough element from A. Adini, R.W. Clough, Analysis of plate bending by the finite element method, University of California, 1960), a typical rectangular plate element is first integrated in the framework of NMM. Then, vibration analysis of arbitrary shaped thin plates is conducted employing the tailored NMM. Using the definition of integral of scalar functions on manifolds, we developed a mathematically rigorous mass lumping scheme for creating a symmetric and positive definite lumped mass matrix that is easy to inverse. A series of numerical experiments have been studied and analyzed, including free and forced vibration of thin plates with various shapes, validating the proposed mass lumping scheme can supersede the consistent mass formulation in those cases.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号