首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Natural frequency analysis of functionally graded material beams with axially varying stochastic properties
Institution:School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
Abstract:The functionally graded material (FGM) has a potential to replace ordinary ones in engineering reality due to its superior thermal and dynamical characteristics. In this regard, the paper presents an effective approach for uncertain natural frequency analysis of composite beams with axially varying material properties. Rather than simply assuming the material model as a deterministic function, we further extend the FGM property as a random field, which is able to account for spatial variability in laboratory observations and in-field data. Due to the axially varying input uncertainty, natural frequencies of the stochastically FGM (S-FGM) beam become random variables. To this end, the Karhunen–Loève expansion is first introduced to represent the composite material random field as the summation of a finite number of random variables. Then, a generalized eigenvalue function is derived for stochastic natural frequency analysis of the composite beam. Once the mechanistic model is available, the brutal Monte-Carlo simulation (MCS) similar to the design of experiment can be used to estimate statistical characteristics of the uncertain natural frequency response. To alleviate the computational cost of the MCS method, a generalized polynomial chaos expansion model developed based on a rather small number of training samples is used to mimic the true natural frequency function. Case studies have demonstrated the effectiveness of the proposed approach for uncertain natural frequency analysis of functionally graded material beams with axially varying stochastic properties.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号