Abstract: | Currently, the majority of computational fluid dynamics (CFD) codes use the finite volume method to spatially discretise the computational domain, sometimes as an array of cubic control volumes. The Finite volume method works well with single‐phase flow simulations, but two‐phase flow simulations are more challenging because of the need to track the surface interface traversing and deforming within the 3D grid. Surface area and volume fraction details of each interface cell must be accurately accounted for, in order to calculate for the momentum exchange and rates of heat and mass transfer across the interface. To attain a higher accuracy in two‐phase flow CFD calculations, the intersection marker (ISM) method is developed. The ISM method is a hybrid Lagrangian–Eulerian front‐tracking algorithm that can model an arbitrary 3D surface within an array of cubic control volumes. The ISM method has a cell‐by‐cell remeshing capability that is volume conservative and is suitable for the tracking of complex interface deformation in transient two‐phase CFD simulations. Copyright © 2015 John Wiley & Sons, Ltd. |