首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A modified discrete-vortex method algorithm with shedding criterion for aerodynamic coefficients prediction at high angle of attack
Institution:Centre de Recherche de l’Armée de l’air, École de l’Air, Salon-de-Provence F-13661, France
Abstract:Low-order methods require less computing power than classical computational fluid dynamics and can be implemented on a laptop computer, which is needed for engineering tasks. Discrete vortex methods are such low order methods that can describe the unsteady separated flow around an airfoil. After a presentation of the leading edge suction parameter discrete vortex method, a modified algorithm is proposed, in order to reduce the computing cost, and compared with the previous one. Several reference unsteady airfoil motions are discussed in terms of gain in the computation time with comparisons between the previous scheme and the present one. The accuracy of the new method is demonstrated through aerodynamic coefficients. The application of the present discrete vortex method to a transient pitching motion of an airfoil is also presented, in order to understand the leading edge vortex formation, and its implication in terms of lift and drag coefficients. The method is not limited to unsteady or transient motions but can also simulate the flow around a constant angle of attack airfoil. In that case, an original method of fast summation of the vortices located far away from the airfoil, allows a linear dependence of the computation time versus the number of vortices shed, which is a great improvement over the quadratic dependence observed in the classical discrete vortex methods. The development of the aerodynamic coefficients with angle of attack, from values ranging between ?10° and 90°, is obtained for a purely two-dimensional flow. In particular, the shape of the lift coefficient of the airfoil in the fully detached flow region is established. Comparisons with relevant experimental or computational fluid dynamics data are discussed in order to grasp the influence of upstream turbulence level and three-dimensional effects in the measured data in the fully detached flow region.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号