首页 | 本学科首页   官方微博 | 高级检索  
     


Statistical mechanics of networks: Estimation and uncertainty
Authors:B.A. Desmarais  S.J. Cranmer
Affiliation:
  • a Department of Political Science, University of Massachusetts at Amherst, Amherst, MA 01003, United States
  • b Department of Political Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
  • Abstract:Exponential random graph models (ERGMs) are powerful tools for formulating theoretical models of network generation or learning the properties of empirical networks. They can be used to construct models that exactly reproduce network properties of interest. However, tuning these models correctly requires computationally intractable maximization of the probability of a network of interest—maximum likelihood estimation (MLE). We discuss methods of approximate MLE and show that, though promising, simulation based methods pose difficulties in application because it is not known how much simulation is required. An alternative to simulation methods, maximum pseudolikelihood estimation (MPLE), is deterministic and has known asymptotic properties, but standard methods of assessing uncertainty with MPLE perform poorly. We introduce a resampling method that greatly outperforms the standard approach to characterizing uncertainty with MPLE. We also introduce ERGMs for dynamic networks—temporal ERGM (TERGM). In an application to modeling cosponsorship networks in the United States Senate, we show how recently proposed methods for dynamic network modeling can be integrated into the TERGM framework, and how our resampling method can be used to characterize uncertainty about network dynamics.
    Keywords:Networks   Dynamic network   ERGM   Bootstrap   Congress
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号