首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of microwave dielectric heating on intraparticle diffusion in reversed-phase liquid chromatography
Authors:Galinada Wilmer A  Guiochon Georges
Institution:Department of Chemistry, The University of Tennessee, Knoxville, TN 37996-1600, USA.
Abstract:The influence of microwave (MW) irradiation on the mass transfer kinetics in reversed-phase liquid chromatography (RPLC) was studied by placing a column in a microwave oven and measuring the incremental change in the temperature of the column effluent stream at various microwave energies and mobile phase compositions. The microwave energy dissipated in the column was set between 15 and 200 W and the mobile phase composition used varied from 100 to 70, 50, and 10% methanol in water at 1.2 mL/min. At all the mobile phase compositions considered, the effluent temperature increased with increasing microwave energy. At 70% methanol, the mobile phase flow rate was set at 1.2, 2.0, and 2.8 mL/min. At 1.2 mL/min, the effluent temperatures at the lowest (15 W) and highest (200 W) microwave energy inputs were 25 +/- 1 degrees C and 41 +/- 1 degrees C for pure methanol, 25 +/- 1 degrees C and 48 +/- 1 degrees C for 70% methanol, 25 +/- 1 degrees C and 50 +/- 1 degrees C for 50% methanol, and, 25 +/- 1 degrees C and 52 +/- 1 degrees C for 10% methanol, respectively. With 70% methanol and microwave energy inputs of 15, 30, and 50 W, the effluent temperature did not change with increasing flow rate; a considerable change was observed at 100, 150, and 200 W between 1.2 and 2.0 mL/min and none between 2.0 and 2.8 mL/min. Chromatographic elution band profiles of propylbenzene were recorded under linear conditions, in 70% methanol solutions, for microwave energy inputs of 0, 15 and 30 W, at constant temperature. The intraparticle diffusion coefficient, De, under microwave irradiation was ca. 20% higher than without irradiation. These preliminary results suggest that microwave irradiation may have a considerable influence on intraparticle diffusion in RPLC.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号