首页 | 本学科首页   官方微博 | 高级检索  
     


Generic non-linear modelling of a bi-material composite beam with partial shear interaction
Authors:A. Heidarpour
Affiliation:Centre for Infrastructure Engineering and Safety, School of Civil and Environmental Engineering, The University of New South Wales, UNSW, Sydney, NSW 2052, Australia
Abstract:Composite members composed of two materials joined by shear connection find widespread use in engineering infrastructure, in both traditional practice and innovative applications. Studies in the literature dating back nearly 60 years have elucidated the mechanics of the behaviour of these composite structural members in which the solution for the slip at the interface between the materials was determined by solving a linear differential equation. However, these solutions are based on a linear formulation of the strain-displacement relationship, and in some applications this relationship must be represented in non-linear form, so that the second order effects in the member can be quantified correctly. This paper presents such a study for a composite member with two materials, being typical of a steel-concrete composite beam in structural engineering. It quantifies the restraint of the member ends by longitudinal and rotational elastic springs, so that the axial tension developed is a function of the transverse loading, material properties, cross-sectional properties and the restraint stiffness. The problem is treated using minimisation of the total potential stored in the two members, the elastic shear connection at their interface, the restraints at the ends and the work done by the transverse forces, for which the differential equations for the deformations can be determined from routine variational calculus. The non-linear equation of equilibrium relating the external loading to the internal actions is stated in closed form by invoking the static and kinematic boundary conditions for the member. The solution is compared with closed form treatments derived elsewhere, and a representative member is analysed so that the influences of the non-linearity, end restraint stiffness and degree of partial shear interaction on its behaviour can be examined.
Keywords:Composite member   Elastic restraint   Energy model   Non-linear   Shear connection
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号