首页 | 本学科首页   官方微博 | 高级检索  
     


Buckling and post-buckling of extensible rods revisited: A multiple-scale solution
Authors:Carlos E.N. Mazzilli
Affiliation:Department of Structural and Geotechnical Engineering, Escola Politécnica, University of São Paulo, Av. Prof. Almeida Prado, trav.2 n. 83, São Paulo 05508-900, Brazil
Abstract:An exact non-linear formulation of the equilibrium of elastic prismatic rods subjected to compression and planar bending is presented, electing as primary displacement variable the cross-section rotations and taking into account the axis extensibility. Such a formulation proves to be sufficiently general to encompass any boundary condition. The evaluation of critical loads for the five classical Euler buckling cases is pursued, allowing for the assessment of the axis extensibility effect. From the quantitative viewpoint, it is seen that such an influence is negligible for very slender bars, but it dramatically increases as the slenderness ratio decreases. From the qualitative viewpoint, its effect is that there are not infinite critical loads, as foreseen by the classical inextensible theory. The method of multiple (spatial) scales is used to survey the post-buckling regime for the five classical Euler buckling cases, with remarkable success, since very small deviations were observed with respect to results obtained via numerical integration of the exact equation of equilibrium, even when loads much higher than the critical ones were considered. Although known beforehand that such classical Euler buckling cases are imperfection insensitive, the effect of load offsets were also looked at, thus showing that the formulation is sufficiently general to accommodate this sort of analysis.
Keywords:Buckling   Extensible rod   Elastic instability   Post-buckling   Method of multiple scales
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号