首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The effect of chloride concentration and pH on pitting corrosion of AA7075 aluminum alloy coated with phenyltrimethoxysilane
Authors:A A Younis  M M B El-Sabbah  Rudolf Holze
Institution:1.AG Elektrochemie, Institut für Chemie,Technische Universit?t Chemnitz,Chemnitz,Germany;2.Department of Chemistry, Faculty of Science,Al-Azhar University,Cairo,Egypt
Abstract:The effect of chloride ion concentration and pH of solution on the corrosion behavior of aluminum alloy AA7075 coated with phenyltrimethoxysilane (PTMS) immersed in aqueous solutions of NaCl is reported. Potentiodynamic polarization, linear polarization, open circuit potential, and weight loss measurements were performed. The surface of samples was examined using SEM and optical microscopy. Elemental characterization of the coating by secondary ion mass spectrometry indicates an intermediate layer between coating and aluminum alloy surface. The corrosion behavior of the aluminum alloy AA7075 depends on chloride concentration and pH of solution. In acidic or neutral solutions, general and pitting corrosion occur simultaneously. On the contrary, exposure to alkaline solutions results in general corrosion only. Results further reveal that aluminum alloy AA7075 is susceptible to pitting corrosion in all chloride solutions with concentrations between 0.05 M and 2 M NaCl; an increase in the chloride concentration slightly shifted both the pitting and corrosion potentials to more active values. Linear polarization resistance measurements show a substantially improved corrosion resistance value in case of samples coated with PTMS as compared to uncoated samples in both neutral (pH = 7), acidic (pH = 0.85 and 3), and alkaline chloride solutions (pH = 10 and 12.85). The higher corrosion resistance of the aluminum alloy coated with PTMS can be attributed to the hydrophobic coating which acts as a barrier and prevents chloride ion penetration and subsequent reaction with the aluminum alloy.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号