首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Biophysical Properties of Phenyl Succinic Acid Derivatised Hyaluronic Acid
Authors:Maria?Teresa?Neves-Petersen  S?ren?Klitgaard  Esben?Skovsen  Steffen?B?Petersen  Kristoffer?T?mmeraas  Khadija?Schwach-Abdellaoui
Institution:(1) NanoBiotechnology Group, Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, Aalborg, Denmark;(2) The Institute for Lasers, Photonics and Biophotonics, University at Buffalo, The State University of New York Buffalo, New York, NY 14260-3000, USA;(3) Novozymes, Krogshoejvej 36, Bagsvaerd, 2880, Denmark
Abstract:Modification of hyaluronic acid (HA) with aryl succinic anhydrides results in new biomedical properties of HA as compared to non-modified HA, such as more efficient skin penetration, stronger binding to the skin, and the ability to blend with hydrophobic materials. In the present study, hyaluronic acid has been derivatised with the anhydride form of phenyl succinic acid (PheSA). The fluorescence of PheSA was efficiently quenched by the HA matrix. HA also acted as a singlet oxygen scavenger. Fluorescence lifetime(s) of PheSA in solution and when attached to the HA matrix has been monitored with ps resolved streak camera technology. Structural and fluorescence properties changes induced on HA-PheSA due to the presence of singlet oxygen were monitored using static light scattering (SLS), steady state fluorescence and ps time resolved fluorescence studies. SLS studies provided insight into the depolymerisation kinetics of PheSA derivatised HA matrix in the presence of singlet oxygen. Time resolved fluorescence studies grave insight into the dynamics of the reaction mechanisms induced on HA-PheSA by singlet oxygen. These studies provided insight into the medical relevance of PheSA derivatised HA: its capacity of scavenging singlet oxygen and of quenching PheSA fluorescence. These studies revealed that HA-PheSA is a strong quencher of electronic excited state PheSA and acts as a scavenger of singlet oxygen, thus medical applications of this derivatised form of HA may protect tissues and organs, such as skin, against reactive oxygen species damage.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号