首页 | 本学科首页   官方微博 | 高级检索  
     


Degeneration of β-glucosidase activity in a foam fractionation process
Authors:Vorakan Burapatana  Ales Prokop  Robert D. Tanner
Affiliation:(1) Department of Chemical Engineering, Vanderbilt University, Station B, PO Box 351604, 37235 Nashville, TN
Abstract:Foam fractionation is a promising technique for concentrating proteins because of its simplicity and low operating cost. One such protein that can be foamed is the enzyme cellulase. The use of inexpensively purified cellulase may be a key step in the economical production of ethanol from biomass. We conducted foam fractionation experiments at total reflux using the cellulase component β-glucosidase to study how continuous shear affects β-glucosidase in a foam such as a fermentation or foam fractionation process. The experiments were conducted at pH 2.4, 5.4, and 11.6 and airflow rates of 3, 6, 15, 20, and 32 cc/min to determine how β-glucosidase activity changes in time at these different conditions. This is apparently a novel and simple way of testing for changes in enzyme activity within a protein foam. The activity did not degenerate during 5 min of reflux at pH 5.4 at an airflow rate of 10 cc/ min. It was established that at 10 min of refluxing, the β-glucosidase denatured more as the flow rate increased. At pH 2.4 and a flow rate of 10 cc/min, the activity remained constant for at least 15 min.
Keywords:β  -Glucosidase  foam fractionation  cellulase  reflux time  airflow rate
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号