首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Quality of Infrared Rotary Dried Terebinth (Pistacia atlantica L.)-Optimization and Prediction Approach Using Response Surface Methodology
Authors:Mohammad Kaveh  Yousef Abbaspour-Gilandeh  Ebrahim Taghinezhad  Dorota Witrowa-Rajchert  Ma&#x;gorzata Nowacka
Institution:1.Department of Biosystems Engineering, College of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran;2.Department of Agricultural Technology Engineering, Moghan College of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran;3.Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 02-776 Warsaw, Poland;
Abstract:Most agricultural products are harvested with a moisture content that is not suitable for storage. Therefore, the products are subjected to a drying process to prevent spoilage. This study evaluates an infrared rotary dryer (IRRD) with three levels of infrared power (250, 500, and 750 W) and three levels of rotation speed (5, 10, and 15 rpm) to dry terebinth. Response surface methodology (RSM) was used to illustrate and optimize the interaction between the independent variables (infrared power and rotation speed) and the response variables (drying time, moisture diffusivity, shrinkage, color change, rehydration rate, total phenolic content, and antioxidant activity). As infrared power and rotation speed increased, drying time, rehydration rate, antioxidant activity, and total phenolic content decreased, while the other parameters were increased. According to the results, the optimum drying conditions of terebinth were determined in the IRRD at an infrared power of 250 W and drum rotation speed of 5 rpm. The optimum values of the response variables were 49.5 min for drying time, 8.27 × 10−9 m2/s for effective moisture diffusivity, 2.26 for lightness, 21.60 for total color changes, 34.75% for shrinkage, 2.4 for rehydration rate, 124.76 mg GAE/g d.m. for total phenolic content and 81% for antioxidant activity.
Keywords:terebinth  color  shrinkage  rehydration rate  total phenolic compounds  antioxidant activity  infrared rotary drying
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号