首页 | 本学科首页   官方微博 | 高级检索  
     

数学模拟方法研究导电剂形貌对锂离子电池高倍率放电性能的影响
引用本文:靳尉仁,卢世刚,庞 静. 数学模拟方法研究导电剂形貌对锂离子电池高倍率放电性能的影响[J]. 无机化学学报, 2011, 27(9): 1675-1684
作者姓名:靳尉仁  卢世刚  庞 静
作者单位:北京有色金属研究总院动力电池中心,北京,100088
基金项目:国家“863”计划(No.2006AA11A148)资助项目
摘    要:制备了正极中只含有一种导电剂(KS-6或Super-P)的锂离子电池,比较了它们的倍率放电性能并对放电过程进行了模拟。以Super-P为正极导电剂的电池15C放电容量为1C容量的84.3%,以KS-6为正极导电剂的电池15C放电容量为1C容量的21.8%,前者的倍率放电性能明显优于后者。数学模拟结果显示,以KS-6为导电剂的正极的Bruggeman系数为3.1,以Super-P为导电剂的正极的Bruggeman系数为2.76,前者明显大于后者,认为这是由于KS-6的片状形貌使其容易相互平行排列造成的。大电流放电时,以KS-6为导电剂的正极中出现了电解质耗竭而导致该区域内电化学反应停止的现象,从而导致电池放电容量急剧降低。

关 键 词:导电剂形貌  数学模拟  倍率放电性能  Bruggeman系数  电解质传输

Effect of Conductive Agent Morphology on High Rate Discharge Capability of Li-Ion Batteries by Mathematical Simulation
JIN Wei-Ren,LU Shi-Gang and PANG Jing. Effect of Conductive Agent Morphology on High Rate Discharge Capability of Li-Ion Batteries by Mathematical Simulation[J]. Chinese Journal of Inorganic Chemistry, 2011, 27(9): 1675-1684
Authors:JIN Wei-Ren  LU Shi-Gang  PANG Jing
Affiliation:R&D Centre for Vehicle Battery and Energy Storage, General Research Institute for Nonferrous Metals, Beijing 100088, China,R&D Centre for Vehicle Battery and Energy Storage, General Research Institute for Nonferrous Metals, Beijing 100088, China and R&D Centre for Vehicle Battery and Energy Storage, General Research Institute for Nonferrous Metals, Beijing 100088, China
Abstract:Tow kinds of lithium ion batteries, using one kind of conductive agent in cathode only, KS-6 or Super-P, were prepared and their rate discharge performances were compared. Their discharge processes were simulated also. The discharge capacity of cell using Super-P as cathode conductive agent at 15C is 84.3% of that at 1C rate. The discharge capacity of cell using KS-6 as cathode conductive agent at 15C rate only holds 21.8% of that at 1C rate. The rate discharge performance of former is superior to the latter.The results of simulation demonstrate that the Bruggeman coefficient for cathode using KS-6 is 3.1, which is much larger than that for cathode using Super-P (2.76). This is ascribed to flaky shape of KS-6 since these particles are prone to stack parallel in electrode. When discharged at large current, the electrolyte in cathode using KS-6 is depleted and the electrochemical reaction in this region ceases. The discharge capacity declines steeply.
Keywords:conductive agent morphology   mathematical simulation   high rate discharge capability   Bruggemen coefficient   transport of electrolyt
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《无机化学学报》浏览原始摘要信息
点击此处可从《无机化学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号