首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Polynomial modeling and reduction of RF body coil spatial inhomogeneity in MRI
Authors:Tincher M  Meyer C R  Gupta R  Williams D M
Institution:Dept. of Radio., Michigan Univ. Med. Sch., Ann Arbor, MI.
Abstract:The usefulness of statistical clustering algorithms developed for automatic segmentation of lesions and organs in magnetic resonance imaging (MRI) intensity data sets suffers from spatial nonstationarities introduced into the data sets by the acquisition instrumentation. The major intensity inhomogeneity in MRI is caused by variations in the B1-field of the radio frequency (RF) coil. A three-step method was developed to model and then reduce the effect. Using a least squares formulation, the inhomogeneity is modeled as a maximum variation order two polynomial. In the log domain the polynomial model is subtracted from the actual patient data set resulting in a compensated data set. The compensated data set is exponentiated and rescaled. Statistical comparisons indicate volumes of significant corruption undergo a large reduction in the inhomogeneity, whereas volumes of minimal corruption are not significantly changed. Acting as a preprocessor, the proposed technique can enhance the role of statistical segmentation algorithms in body MRI data sets.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号