首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Measurement of the acoustic velocity field of nonlinear standing waves using the synchronized PIV technique
Institution:1. Faculty of Mechanical Engineering, Semnan University, Semnan, Iran;2. Department of Engineering, University of Cambridge, Cambridge, UK
Abstract:The motion of gas within an air-filled rigid-walled square channel subjected to acoustic standing waves is experimentally investigated. The synchronized particle image velocimetry (PIV) technique has been used to measure the acoustic velocity fields at different phases over the excitation signal period. The acoustic velocity measurements have been conducted for two different acoustic intensities in the quasi-nonlinear range (in which the nonlinear effects can be neglected in comparison with the dissipation effects), and one acoustic intensity in the finite-amplitude nonlinear range (in which both the nonlinear term and the dissipative term play a role in the wave equation). The experimental velocity fields for the quasi-nonlinear cases are compared with the analytical results obtained from the time-harmonic solution of the wave equation. Good agreement between the experimental and analytical velocity fields proves the ability of the synchronized PIV technique to accurately measure both temporal and spatial variations of the acoustic velocity fields. The verified technique is then used to measure the acoustic velocity fields of the finite-amplitude nonlinear case at different phases.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号