首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Kinetics and Mechanism of the Formation and Acid Dissociation of Cobalt(II), Nickel(II), and Copper(II) Complexes with the Highly Enolized beta-Diketone 3-(N-Acetylamido)pentane-2,4-dione (=Hamac) in Aqueous Solution
Authors:Hirsch Jürgen  Paulus Helmut  Elias Horst
Institution:Institut für Anorganische Chemie and Fachbereich Materialwissenschaft, Technische Hochschule Darmstadt, Petersenstrasse 18, D-64289 Darmstadt, Federal Republic of Germany.
Abstract:The beta-diketone Hamac = 3-(N-acetylamido)pentane-2,4-dione was characterized by potentiometric, spectrophotometric, and kinetic methods. In water, Hamac is very soluble (2.45 M) and strongly enolized, with enol]/ketone] = 2.4 +/- 0.1. The pK(a) of Hamac is 7.01 +/- 0.07, and the rate constants for enolization, k(e), and ketonization, k(k), at 298 K are 0.0172 +/- 0.0004 s(-1) and 0.0074 +/- 0.0015 s(-1), respectively. An X-ray structure analysis of the copper(II) complex Cu(amac)(2).toluene (=C(21)H(28)CuN(2)O(6); monoclinic, C2/c; a = 20.434(6), b = 11.674(4), c = 19.278(6) ?; beta = 100.75(1) degrees; Z = 8; R(w) = 0.0596) was carried out. The bidentate anions amac(-) coordinate the copper via the two diketo oxygen atoms to form a slightly distorted planar CuO(4) coordination core. Rapid-scan stopped-flow spectrophotometry was used to study the kinetics of the reaction of divalent metal ions M(2+) (M = Ni,Co,Cu) with Hamac in buffered aqueous solution at variable pH and I = 0.5 M (NaClO(4)) under pseudo-first-order conditions (M(2+)](0) > Hamac](0)) to form the mono complex M(amac)(+). For all three metals the reaction is biphasic. The absorbance/time data can be fitted to the sum of two exponentials, which leads to first-order rate constants k(f) (fast initial step) and k(s) (slower second step). The temperature dependence of k(f) and k(s) was measured. It follows from the kinetic data that (i) the keto tautomer of Hamac, HK, does not react with the metal ions M(2+), (ii) the rate constant k(f) increases linearly with M(2+)](0) according to k(f) = k(0) + k(2)M(2+)](0), and (iii) the rate constant k(s) does not depend on M(2+)](0) and describes the enolization of the unreactive keto tautomer HK. The pH dependence of the second-order rate constant k(2) reveals that both the enol tautomer of Hamac, HE, and the enolate, E(-), react with M(2+) in a second-order reaction to form the species M(amac)(+). At 298 K rate constants k(HE) are 18 +/- 6 (Ni), 180 +/- 350 (Co), and (9 +/- 5) x 10(4) (Cu) M(-1) s(-1) and rate constants k(E) are 924 +/- 6 (Ni), (7.4 +/- 0.6) x 10(4) (Co), and (8.4 +/- 0.2) x 10(8) (Cu) M(-1) s(-1). The acid dissociation of the species M(amac)(+) is triphasic. Very rapid protonation (first step) leads to M(Hamac)(2+), which is followed by dissociation of M(Hamac)(2+) and M(amac)(+), respectively (second step). The liberated enol Hamac ketonizes (third step). The mechanistic implications of the metal dependence of rate constants k(HE), k(E), k(-HE), and k(-E) are discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号