首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fluorescence lifetimes of diphenylhexatriene-containing probes reflect local probe concentrations: Application to the measurement of membrane fusion
Authors:Barry R Lentz
Institution:(1) Department of Biochemistry and Biophysics, University of North Carolina, 27599-7160 Chapel Hill, North Carolina
Abstract:An important process in the life of a cell is fusion between cellular membranes. This is the process by which two cellular compartments surrounded by different membranes join to become a single compartment surrounded by a single membrane, without significant loss of compartment contents. To demonstrate fusion, the cell biophysicist must demonstrate all three critical aspects of the process: (1) mixing of membrane components, (2) mixing of compartment contents; and (3) retention of compartment contents. Most commonly, accomplishing this involves the use of fluorescence probes. The general theme to the methods described involves some form of concentration-dependent quenching. An unique method developed in our laboratory utilizes the concentration dependence of the fluorescence lifetime of a phosphatidylcholine containing carboxyethyl diphenylhexatriene at position 2 and palmitic acid at position 1 of glycerol (DPHpPC). The fluorescence lifetime of this molecule and that of its parent fluorophore diphenylhexatriene (DPH) shorten dramatically as their two-dimensional concentrations in a membrane increase. This ldquolifetime quenchingrdquo can be described by dimer formation that reduces the symmetry of the DPH excited state. This phenomenon allows one to use the fluorescence lifetime to gain insight into the local concentration of probe in microscopic regions of a membrane. One application of this is in distinguishing lipid transfer between the outer leaflets of two contacting membrane bilayers from fusion between these membranes that leads to mixing of lipids in both the inner and outer leaflets of the membrane bilayers. This allows a single measurement to demonstrate fusion between membrane pairs.Abbreviations PEG poly(ethylene glycol) - Na2EDTA ethyiene-diamine-tetraacedic acid, disodium salt - LUV large, unilamellar vesicles made by rapid extrusion technique - DPH 1,6-diphenyl-trans-1,3,5-hexatriene - DPHpPC 1-palmitoyl-2-2-4- (phenyl-trans-1,3,5-hexatrienyl)phenyl]ethyl]oxy]carbonyl]-3-sn-phosphatidylcholine - DPPC 1,2-dipalmitoyl-3-sn-phosphatidylcholine - PA palmitic acid - NBD-PE N-(7-nitro-2,1,3-benzoxadiazol-4-yl)-PE - Rh-PE N-(lissamine Rhodamine B sulfoyl)-PE - R18 octadecyl Rhodamine B chloride - ANTS 1-aminonaphthalene-3,6,8-trisulfonic acid - DPX N,Nprime-p-xylylene-bis(pyradinium bromide)
Keywords:fluorescence  DPH  fusion  poly(ethylene glycol)
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号