Improved beamforming using curved sparse 2D arrays in ultrasound |
| |
Authors: | Kirkebø Jan Egil Austeng Andreas |
| |
Affiliation: | Department of Informatics, University of Oslo, P.O. Box 1080, Blindern, N-0316 Oslo, Norway |
| |
Abstract: | In this work we have investigated the effect of curving phase-steered sparse periodic two-dimensional arrays in one direction, and relate this effect to the geometry of the arrays. We have shown that curving is equivalent to removing some of the element periodicity, thus adding some “randomness” to the layout. Compared to flat phase-steered periodically sparse two-dimensional arrays, curving offers an even greater suppression of grating lobes located at directions along the curvature. The class of arrays yielding improved performance due to this suppression of grating lobes has been characterized.The point spread functions of some previously proposed array layouts, shown to be promising for ultrasonic imaging, have been simulated. The arrays have been simulated with various number of elements as well as various focal points, with array and field parameters typical to those in volumetric cardiac imaging. On a 48 × 48 element grid with a transducer center frequency of 3 MHz and the target at 40 mm, reductions in the peak sidelobe level of up to 12 dB were recorded for some critical steering directions, without significant differences in the beamwidth. The integrated sidelobe ratio was also examined, showing an almost equivalent performance as the flat array. This study shows that, without adding any complexity to the system, the overall image quality of a volumetric imaging system can be improved significantly by curving the array in one direction. |
| |
Keywords: | 43.60.Fg |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|