Lens-focused transducer modeling using an extended KLM model |
| |
Authors: | Maréchal Pierre Levassort Franck Tran-Huu-Hue Louis-Pascal Lethiecq Marc |
| |
Affiliation: | François-Rabelais University of Tours, LUSSI, ENIVL, Rue de la Chocolaterie, BP 3410, 41034 BLOIS Cedex, France |
| |
Abstract: | The goal of this work was to develop an extended ultrasound transducer model that would optimize the trade-off between accuracy of the calculation and computational time. The derivations are presented for a generalized transducer model, that is center frequency, pulse duration and physical dimensions are all normalized. The paper presents a computationally efficient model for lens-focused, circular (axisymmetric) single element piezoelectric ultrasound transducer. Specifically, the goal of the model is to determine the lens effect on the electro-acoustic response, both on focusing and on matching acoustic properties. The effective focal distance depends on the lens geometry and refraction index, but also on the near field limit, i.e. wavelength and source radius, and on the spectrum bandwidth of the ultrasound source. The broadband (80%) source generated by the transducer was therefore considered in this work. A new model based on a longitudinal-wave assumption is presented and the error introduced by this assumption is discussed in terms of its maximum value (16%) and mean value (5.9%). The simplified model was based on an extension of the classical KLM model for transducer structures and on the related assumptions. The validity of the implemented extended KLM model was evaluated by comparison with finite element modeling, itself previously validated analytically for the one-dimensional planar geometry considered. The pressure field was then propagated using the adequate formulation of the Rayleigh integral for both the extended KLM and finite element results. The simplified approach based on the KLM model delivered the focused response with good accuracy, and hundred-fold lower calculation time in comparison with a mode comprehensive FEM method. The trade-off between precision and time thus becomes compatible with an iterative procedure, used here for the optimization of the acoustic impedance of the lens for the chosen configuration. An experimental comparison was performed and found to be in good agreement with such an extension of the KLM model. The experiments confirm the accuracy of such a model in a validity domain up to −12 dB on the pulse-echo voltage within a relative error of 9% between experiment and modeling. This extended KLM model can advantageously be used for other transducer geometries satisfying the assumption of a predominantly longitudinal vibration or in an optimization procedure involving an adequate criteria for a particular application. |
| |
Keywords: | 43.38.Ar 43.38.Fx 43.40.Rj 43.30.Jx |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|