首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fluorescence ratiometry of monomer/excimer emissions in a space-through PET system
Authors:Lee Suh Hyun  Kim Su Ho  Kim Sung Kuk  Jung Jong Hwa  Kim Jong Seung
Institution:Department of Chemistry, Dankook University, Seoul 140-714, Korea, and Korea Basic Science Institute (KBSI), Daejeon 305-333, Korea.
Abstract:Reaction: see text]. Fluorogenic calix4]arenes (1 and 2) bearing a pendent ethyleneamine on their triazacrown rings, respectively, were synthesized in the cone conformation. Compared with 4, free 1 and 2 display a relatively weak emission, reflecting that a PET process from the pendent amine group (-CH2CH2NH2) to the fluorogenic pyrenes is mainly operated. Addition of various metal ions or anions to the solution of 1 or 2 reduces the PET because the pendent alkylamine takes part in the complexation, causing their fluorescence spectra to be changed. When Pb2+, a quenching metal ion, is added to 1 or 2, their pyrene monomer emission is enhanced with their excimer emission quenched, which is due to conformational changes of the facing carbonyl groups as well as to the participation of the ethyleneamine into the three-dimensional Pb2+ ion encapsulation. In contrast, upon addition of alkali metal ions to the 1 and 2, both monomer and excimer emissions are observed to increase, which is attributable to the CHEF effect and the retained conformations. For anion sensing, both 1 and 2 show a high selectivity for F- ions over other anions tested. When the F- ion is bound to 1 or 2 by hydrogen bonding between the amide NH of the triazacrown ring and F-, both their monomer and excimer emissions are weakened due to PET from the bound F- to the pyrene units.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号