首页 | 本学科首页   官方微博 | 高级检索  
     


Stepped light-induced transient measurements of photocurrent and voltage in dye-sensitized solar cells: application for highly viscous electrolyte systems
Authors:Nakade Shogo  Kanzaki Taisuke  Wada Yuji  Yanagida Shozo
Affiliation:Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Japan.
Abstract:To measure electron diffusion coefficients (D) and electron lifetimes (tau) of dye-sensitized solar cells (DSC), we introduced stepped light-induced transient measurements of photocurrent and voltage (SLIM-PCV), which can simplify the optical setup and reduce measurement time in comparison to conventional time-of-flight and frequency-modulated measurements. The method was applied to investigate the influence of the viscosity of a thermally stable high-boiling-point solvent on the energy conversion efficiency of DSCs. By systematic study of the influence of the viscosity, the species of cations as the counter charge of I(-)/I(3)(-), and the concentrations of electrolytes, we concluded that a lower dye cation reduction rate due to slower iodine diffusion is a limiting factor for a highly viscous electrolyte system. On the other hand, comparable values of D and increased values of tau were observed in a highly viscous electrolyte. By employing 0.5 M TBAI and 0.05 M I(2) in propylene carbonate, the efficiency of the DSC became comparable to that of a DSC using conventional electrolytes consisting of LiI, imidazolium iodide, and 4-tert-butylpyridine in methoxyacetonitrile. The simultaneous evaluation of D and tau through the appropriately simple measurement realizes fast optimization of the efficient and reliable DSC composed of thermally stable but often viscous electrolytes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号