首页 | 本学科首页   官方微博 | 高级检索  
     


Comparison of Quantum Statistical Models: Equivalent Conditions for Sufficiency
Authors:Francesco?Buscemi  author-information"  >  author-information__contact u-icon-before"  >  mailto:buscemi@iar.nagoya-u.ac.jp"   title="  buscemi@iar.nagoya-u.ac.jp"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author
Affiliation:1.Institute for Advanced Research,University of Nagoya,Nagoya,Japan
Abstract:A family of probability distributions (i.e. a statistical model) is said to be sufficient for another, if there exists a transition matrix transforming the probability distributions in the former to the probability distributions in the latter. The Blackwell-Sherman-Stein (BSS) Theorem provides necessary and sufficient conditions for one statistical model to be sufficient for another, by comparing their information values in statistical decision problems. In this paper we extend the BSS Theorem to quantum statistical decision theory, where statistical models are replaced by families of density matrices defined on finite-dimensional Hilbert spaces, and transition matrices are replaced by completely positive, trace-preserving maps (i.e. coarse-grainings). The framework we propose is suitable for unifying results that previously were independent, like the BSS theorem for classical statistical models and its analogue for pairs of bipartite quantum states, recently proved by Shmaya. An important role in this paper is played by statistical morphisms, namely, affine maps whose definition generalizes that of coarse-grainings given by Petz and induces a corresponding criterion for statistical sufficiency that is weaker, and hence easier to be characterized, than Petz’s.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号