The Ternary Stannides MgRuSn4 and MgxRh3Sn7—x (x = 0.98—1.55) |
| |
Authors: | Martin Schlü ter,Andreas Kunst,Rainer Pö ttgen |
| |
Abstract: | The magnesium transition metal stannides MgRuSn4 and MgxRh3Sn7—x (x = 0.98—1.55) were synthesized from the elements in glassy carbon crucibles in a water‐cooled sample chamber of a high‐frequency furnace. They were characterized by X‐ray diffraction on powders and single crystals. MgRuSn4 adopts an ordered PdGa5 type structure: I4/mcm, a = 674.7(1), c = 1118.1(2) pm, wR2 = 0.0506, 515 F2 values and 12 variable parameters. The ruthenium atoms have a square‐antiprismatic tin coordination with Ru—Sn distances of 284 pm. These [RuSn8/2] antiprisms are condensed via common faces forming two‐dimensional networks. The magnesium atoms fill square‐prismatic cavities between adjacent [RuSn4] layers with Mg—Sn distances of 299 pm. The rhodium based stannides MgxRh3Sn7—x crystallize with the cubic Ir3Ge7 type structure, space groupe Im3m. The structures of four single crystals with x = 0.98, 1.17, 1.36, and 1.55 have been refined from X‐ray diffractometer data. With increasing tin substitution the a lattice parameter decreases from 932.3(1) pm for x = 0.98 to 929.49(6) pm for x = 1.55. The rhodium atoms have a square antiprismatic tin/magnesium coordination. Mixed Sn/Mg occupancies have been observed for both tin sites but to a larger extend for the 12d Sn2 site. Chemical bonding in MgRuSn4 and MgxRh3Sn7—x is briefly discussed. |
| |
Keywords: | Intermetallic Compounds Crystal Structure Stannides |
|
|