首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Synthesis and characterization of poly(vinyl phosphonic acid) (PVPA)-Fe3O4 nanocomposite
Authors:Z Durmus  H ErdemiA Aslan  MS ToprakH Sozeri  A Baykal
Institution:a Department of Chemistry, Fatih University, B. Cekmece, 34500 Istanbul, Turkey
b Department of Polymer Engineering, Yalova University, 77100 Yalova, Turkey
c TUBITAK-UME, National Metrology Institute, P.O. Box 54, 41470 Gebze-Kocaeli, Turkey
d Functional Materials Division, Royal Institute of Technology - KTH, SE16440 Stockholm, Sweden
Abstract:Poly(vinyl phosphonic acid) (PVPA)-Fe3O4 nanocomposite is synthesized by the precipitation of Fe3O4 in the presence of PVPA. Structural, surface, morphological, thermal properties and conductivity characterization/evaluation of the nanocomposite were performed by XRD, FT-IR, TEM, TGA and conductivity measurements respectively. The capping of PVPA around the Fe3O4 nanoparticles was confirmed by FT-IR spectroscopy, the interaction being via bridging oxygens of the phosphate and the nanoparticle surface. The crystallite and particle size were obtained as 6 ± 2 and 8.7 ± 0.1 nm from XRD line profile fitting and TEM image analysis respectively, which reveal nearly single crystalline nature of the Fe3O4 nanoparticles. Magnetic characterization of the bulk magnetite and (PVPA)-Fe3O4 nanocomposite reveals that both are in the superparamagnetic state at room temperature. The average magnetic domain size of the nanoparticles has been calculated using the Langevin function, which was fitted to the measured M-H hysteresis curves as 7.6 nm for the nanocomposite. In the nanocomposite, the reduction is due to the adsorption of PVPA onto the magnetite surface, which cancels some of the free spins at the surface causing a magnetically dead layer. Analysis of the conductivity and permittivity measurements revealed the coupling of ionic and polymer segmental motions and strong temperature dependency in the nanocomposite.
Keywords:Nanocomposite  Magnetite  Electrical properties  Conducting polymer  Magnetization
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号