首页 | 本学科首页   官方微博 | 高级检索  
     检索      

ZSM-5分子筛催化1-己烯生成cis-2-己烯的理论研究
引用本文:李延锋,朱吉钦,刘辉,贺鹏,王鹏,田辉平.ZSM-5分子筛催化1-己烯生成cis-2-己烯的理论研究[J].物理化学学报,2011,27(5):1081-1088.
作者姓名:李延锋  朱吉钦  刘辉  贺鹏  王鹏  田辉平
作者单位:1. State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China; 2. Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, P. R. China
基金项目:国家重点基础研究发展计划项目(973)
摘    要:基于54T团簇模型, 采用ONIOM分层计算方法, 研究了1-己烯在ZSM-5分子筛上进行顺式双键异构的反应机理. 计算结果表明, 1-己烯的顺式双键异构反应通过只有分子筛Brønsted酸部分起作用的机理进行. 首先, 1-己烯与分子筛的Brønsted酸性位形成π配位复合物. 接着, 酸质子发生迁移使1-己烯的双键端基碳原子被质子化, 同时双键的另一碳原子与失去质子的Brønsted酸羟基的氧原子成键, 形成稳定的烷氧基中间体. 然后, 烷氧基中间体中的C―O共价键被打断, 同时Brønsted酸羟基的氧原子从C6H13基团提取一个氢原子还原分子筛的酸性位, 并且生成cis-2-己烯. 这一反应路径与借助于分子筛活性位的酸-碱双功能性质的反应路径是相互竞争的. 计算得到的表观活化能是59.37 kJ·mol-1, 该值与实验值非常接近. 这一结果合理解释了双键异构过程中的能量特征, 并且扩展了对分子筛活性位本质的理解.

关 键 词:ZSM-5  活性位  己烯  密度泛函理论  双键异构  
收稿时间:2011-01-06
修稿时间:2011-04-01

Theoretical Study of the Double-Bond Isomerization of 1-Hexene to cis-2-Hexene over ZSM-5 Zeolite
LI Yan-Feng,ZHU Ji-Qin,LIU Hui,HE Peng,WANG Peng,TIAN Hui-Ping.Theoretical Study of the Double-Bond Isomerization of 1-Hexene to cis-2-Hexene over ZSM-5 Zeolite[J].Acta Physico-Chimica Sinica,2011,27(5):1081-1088.
Authors:LI Yan-Feng  ZHU Ji-Qin  LIU Hui  HE Peng  WANG Peng  TIAN Hui-Ping
Institution:1. State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China; 2. Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, P. R. China
Abstract:We investigated the double-bond isomerization reaction of 1-hexene to cis-2-hexene on the surface of ZSM-5 zeolite using density functional theory with a 54T cluster model simulating the local structures of zeolite materials. We found that the double-bond isomerization proceeded by a mechanism that did not involve the bifunctional (acid-base) nature of the zeolite active sites but exclusively involved the Brφnsted acid sites. According to this mechanism, 1-hexene is the first physically adsorbed onto the zeolite acid site resulting in the formation of a π-complex, and then the acidic proton of the zeolite transfers to a carbon atom of the double bond of the physisorbed 1-hexene. The other carbon atom of the double bond of the physisorbed 1-hexene bonds with the Brφnsted host oxygen and yields a stable alkoxy intermediate. Thereafter, the Brφnsted host oxygen abstracts a hydrogen atom from the C6H13 fragment and the C―O bond of the alkoxy intermediate is broken, which restores the zeolite active site and yields physisorbed cis-2-hexene. The proposed reaction pathway competes with the bifunctional pathway. The rate-determining step is the decomposition of the alkoxy intermediate with an activation energy of 134. 64 kJ·mol-1. The calculated apparent activation energy for the isomerization reaction is 59. 37 kJ·mol-1, which is in good agreement with the reported experimental value. These results well explain the energetic aspects during the double-bond isomerization and extend the understanding of the nature of zeolite active sites.
Keywords:ZSM-5
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《物理化学学报》浏览原始摘要信息
点击此处可从《物理化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号