首页 | 本学科首页   官方微博 | 高级检索  
     检索      

四齿配体[Ru(iph)(L)2]2+ (L=cpy,mpy, npy)配合物的结构和光谱特征
引用本文:张建坡,金丽,张红星.四齿配体[Ru(iph)(L)2]2+ (L=cpy,mpy, npy)配合物的结构和光谱特征[J].物理化学学报,2011,27(5):1089-1094.
作者姓名:张建坡  金丽  张红星
作者单位:1. School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, Jinlin Province, P. R. China; 2. State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Changchun 130023, P. R. China
基金项目:理论化学计算国家重点实验室开放课题基金
摘    要:采用密度泛函的B3LYP和UB3LYP方法分别优化了一系列Ru(iph)(L)2]2+ (L=cpy (1), mpy (2), npy (3); 其中iph为2,9-双(1′-甲基-2′-咪唑)-1,10-邻二氮杂菲, cpy为4-氰基嘧啶, mpy为4-甲基嘧啶, npy为4-氮二甲基嘧啶)配合物的基态和激发态结构. 利用含时密度泛函理论(TD-DFT)方法, 结合极化连续介质(PCM)模型计算了它们在丙酮溶液中的吸收和发射光谱. 研究结果表明: 优化得到的几何结构参数和相应的实验值符合得非常好. 1和2的最高占据分子轨道主要由金属的d轨道和iph配体的π轨道构成, 但是3主要占据在npy配体上, 而它们的最低空轨道主要由iph配体的π反键轨道占据. 因此, 1和2的最低能吸收和发射属于金属到配体(MLCT)和配体内部(ILCT)的电荷转移跃迁, 而3属于两个配体之间的电荷转移(LLCT)跃迁. 三个配合物的最低能吸收分别在509 nm (1), 527 nm (2)和563 nm (3), 其磷光发射分别在683 nm (1), 852 nm (2)和757 nm (3). 这显示出通过调节L配体的π电子给予能力可以改变最低能吸收和发射的跃迁性质和发光颜色.

关 键 词:四齿配体Ru配合物  激发态  含时密度泛函理论  光谱特征  电荷转移  
收稿时间:2011-01-03
修稿时间:2011-03-25

Structures and Spectroscopic Properties of [Ru(iph)(L)2]2+ (L=cpy, mpy, npy) Complexes Containing Tetradentate Ligands
ZHANG Jian-Po,JIN Li,ZHANG Hong-Xing.Structures and Spectroscopic Properties of [Ru(iph)(L)2]2+ (L=cpy, mpy, npy) Complexes Containing Tetradentate Ligands[J].Acta Physico-Chimica Sinica,2011,27(5):1089-1094.
Authors:ZHANG Jian-Po  JIN Li  ZHANG Hong-Xing
Institution:1. School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, Jinlin Province, P. R. China; 2. State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Changchun 130023, P. R. China
Abstract:The geometries of ground and excited states of a series of ruthenium complexes Ru(iph)(L)2]2+(L=cpy (1), mpy (2), npy (3); iph=2,9-di(1-methyl-2-imidazole)-1,10-phenanthroline, cpy=4-cyano pyridine, mpy=4-methyl pyridine, npy=4-N-methyl pyridine) were optimized by the Becke′s three-parameter functional and the Lee-Yang-Parr (B3LYP) functional and unrestricted B3LYP methods, respectively. Time-dependent density functional theory (TD-DFT) method at the B3LYP level together with the polarized continuum model (PCM) were used to obtain their absorption and phosphorescent emission spectra in acetone media based on their optimized ground and excited-state geometries. The results revealed that the optimized structural parameters agreed well with the corresponding experimental results. The highest occupied molecular orbitals were localized mainly on the d orbital of the metal and the π orbital of the iph ligand for 1 and 2, and the npy ligand for 3, while the lowest unoccupied molecular orbitals were mainly composed of π orbital of the iph ligand. Therefore, the lowest-lying absorptions and emissions were assigned to the metal to ligand charge transfer (MLCT)/intra-ligand charge transfer (ILCT) transition for 1 and 2, and the ligand to ligand charge transfer (LLCT) transition for 3. The lowest-lying absorptions are at 509 nm (1), 527 nm (2), and 563 nm (3) and the phosphorescence emissions at 683 nm (1), 852 nm (2), and 757 nm (3). The calculation results show that the absorption and emission transition characteristics and the phosphorescence color can be changed by altering the π electron-donating ability of the L ligand.
Keywords:Tetradentate ligands Ru complexes  Excited state  Time-dependent density functional theory  Spectroscopic property  Charge transfer  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《物理化学学报》浏览原始摘要信息
点击此处可从《物理化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号