首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical solution and sensitivity analysis of filter cake permeability and resistance to model parameters
Authors:Nelly M. Abboud  M. Yavuz Corapcioglu
Affiliation:(1) Department of Civil Engineering, University of Connecticut, 06710 Waterbury, CT, USA;(2) Department of Civil Engineering, Texas A & M University, 77843-3136 College Station, TX, USA
Abstract:The migration and capture of solid particles in porous media occur in fields as diverse as water and wastewater treatment, well drilling, and in various liquid-solid separation processes. Filter cakes are formed when a liquid containing solid particles is forced through a pervious surface which allows the liquid transport while retaining solid particles. Following a literature survey, a governing equation for the cake thickness is obtained by considering the instantaneous mass balance. Later, numerical solutions for the cake thickness, cake permeability, cake resistance, solid particle velocity (cake compression rate) and concentration of suspended particles are obtained and a sensitivity analysis is conducted. The sensitivity analysis shows that the cake permeability and cake resistance are more sensitive to the rate constant of cake erosion than they are to the rate constant of particle capture. However, the concentration of suspended solid particles, and the solid velocity are mostly sensitive to the slurry parameter and the rate constant of particle trapping. Moreover, cake permeability, compressibility, concentration of suspended particles, and the solid velocity are very sensitive to the concentration at the filter septum. Finally, as expected, with a thicker slurry, more particles are captured inside the cake, thus forming a thicker and more resistant cake. Also, as more particles are being filtered at the filter septum, a thinner cake is formed and a smaller effluent concentration is achieved.
Keywords:Filter cakes  permeability  matrix compressibility modeling
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号