首页 | 本学科首页   官方微博 | 高级检索  
     


The two-group heuristic to solve the multi-product,economic lot sizing and scheduling problem in flow shops
Affiliation:1. Telfer School of Management, University of Ottawa, 55 Laurier Avenue East, Ottawa, ON K1N 6N5, Canada;2. Université Paris-Est, ESIEE Paris, Département Ingénierie des Systèmes, 2, boulevard Blaise Pascal Cité DESCARTES BP 99 93162 Noisy le Grand Cedex, France
Abstract:This paper presents a new and efficient heuristic to solve the multi-product, economic lot sizing and scheduling problem in flow shops. The problem addressed is that of making sequencing, lot sizing and scheduling decisions for a number of products so as to minimize the sum of setup costs, work-in-process inventory holding costs and final-products inventory holding costs while a given demand is fulfilled without backlogging. The proposed heuristic, called the two-group method (TG), assumes that the cycle time of each product is an integer multiple of a basic period and restricts these multiples to take either the value 1 or K where K is a positive integer. The products to be produced once each K basic period are then partitioned into K sub-groups and each sub-group is assigned to one and only one of the K basic periods of the global cycle. This method first determines a value for K and a feasible partition. Then, a production sequence is determined for each sub-group of products and a non-linear program is solved to determine lot sizes and a feasible schedule. We also show how to adapt our method to the case of batch streaming (transportation of sub-batches from one machine to the next). To evaluate its performance, the TG method was compared to both the common cycle method and a reinforced version of El-Najdawi’s job-splitting heuristic. Numerical results show that the TG method outperforms both of these methods.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号