首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Quantum phase transitions and vortex dynamics in superconducting networks
Institution:1. Dipartimento di Metodologie Fisiche e Chimiche (DMFCI), Università di Catania, viale A. Doria 6, 95125 Catania, Italy;2. Istituto Nazionale per la Fisica della Materia (INFM), Unità di Catania, Italy;3. Department of Applied Sciences and DIMES, Delft University of Technology, Lorentzweg 1, CJ 2628, Delft, Netherlands;1. Comisión Nacional de Energía Atómica and Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche, Av. Bustillo 9500, 8400 San Carlos de Bariloche, Argentina;2. Instituto Balseiro, Universidad Nacional de Cuyo and Comisión Nacional de Energía Atómica, Av. Bustillo 9500, 8400 San Carlos de Bariloche, Argentina;1. Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina 4, Moscow 119991, Russia;2. Faculty of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie gory, Moscow 119991, Russia;3. Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, Moscow Region 141700, Russia;1. Center of Excellence in Quantum Technology, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand;2. Research Center for Quantum Technology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand;3. Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, 50200, Thailand;4. Athens Institute for Education and Research, Mathematics and Physics Divisions, 8 Valaoritou Street, Kolonaki, 10671, Athens, Greece;1. Center of Excellence in Quantum Technology, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand;2. Quantum-Atom Optics Laboratory and Research Center for Quantum Technology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand;3. Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, 50200, Thailand;1. Comisión Nacional de Energía Atómica and Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche, Av. Bustillo 9500, 8400 San Carlos de Bariloche, Argentina;2. Instituto Balseiro, Universidad Nacional de Cuyo and Comisión Nacional de Energía Atómica, Av. Bustillo 9500, 8400 San Carlos de Bariloche, Argentina
Abstract:Josephson-junction arrays are ideal model systems to study a variety of phenomena such as phase transitions, frustration effects, vortex dynamics and chaos. In this review, we focus on the quantum dynamical properties of low-capacitance Josephson-junction arrays. The two characteristic energy scales in these systems are the Josephson energy, associated with the tunneling of Cooper pairs between neighboring islands, and the charging energy, which is the energy needed to add an extra electron charge to a neutral island. The phenomena described in this review stem from the competition between single-electron effects with the Josephson effect. They give rise to (quantum) superconductor–insulator phase transitions that occur when the ratio between the coupling constants is varied or when the external fields are varied. We describe the dependence of the various control parameters on the phase diagram and the transport properties close to the quantum critical points. On the superconducting side of the transition, vortices are the topological excitations. In low-capacitance junction arrays these vortices behave as massive particles that exhibit quantum behavior. We review the various quantum–vortex experiments and theoretical treatments of their quantum dynamics.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号