首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Circuit preserving edge maps II
Institution:Optimal Control Systems, Yorkville, New York 13495 USA
Abstract:In Section 1 of this article we prove the following. Let f: GG′ be a circuit surjection, i.e., a mapping of the edge set of G onto the edge set of G′ which maps circuits of G onto circuits of G′, where G, G′ are graphs without loops or multiple edges and G′ has no isolated vertices. We show that if G is assumed finite and 3-connected, then f is induced by a vertex isomorphism. If G is assumed 3-connected but not necessarily finite and G′ is assumed to not be a circuit, then f is induced by a vertex isomorphism. Examples of circuit surjections f: GG′ where G′ is a circuit and G is an infinite graph of arbitrarily large connectivity are given. In general if we assume G two-connected and G′ not a circuit then any circuit surjection f: GG′ may be written as the composite of three maps, f(G) = q(h(k(G))), where k is a 1-1 onto edge map which preserves circuits in both directions (the “2-isomorphism” of Whitney (Amer. J. Math. 55 (1933), 245–254) when G is finite), h is an onto edge map obtained by replacing “suspended chains” of k(G) with single edges, and G is a circuit injection (a 1-1 circuit surjection). Let f: GM be a 1-1 onto mapping of the edges of G onto the cells of M which takes circuits of G onto circuits of M where G is a graph with no isolated vertices, M a matroid. If there exists a circuit C of M which is not the image of a circuit in G, we call f nontrivial, otherwise trivial. In Section 2 we show the following. Let G be a graph of even order. Then the statement “no trivial map f: GM exists, where M is a binary matroid,” is equivalent to “G is Hamiltonian.” If G is a graph of odd order, then the statement “no nontrivial map f: GM exists, where M is a binary matroid” is equivalent to “G is almost Hamiltonian,” where we define a graph G of order n to be almost Hamiltonian if every subset of vertices of order n − 1 is contained in some circuit of G.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号